Management of recurrent rhegmatogenous retinal detachment

Manish Nagpal, Pranita Chaudhary, Shachi Wachasundar, Ahmed Eltayib, Aparajita Raihan

Rhegmatogenous retinal detachment (RRD) repair is one of the most common vitreoretinal surgeries a surgeon performs. In an ideal scenario, RRD can be repaired with a single surgical intervention; however, despite excellent skill, flawless technique, and the introduction of high-end technology, up to 10% of cases require additional interventions to ultimately repair recurrent detachments. It is thus important to study the outcomes of multiple interventions to understand whether performing repeat vitrectomy on patients with a history of failed surgeries is worthwhile. Thus, recurrent retinal detachment (re-RD) remains a significant challenge for vitreoretinal surgeons as well as the patients considering the economic and the emotional burden of undergoing multiple interventions. The advent of microincision vitrectomy system, perfluorocarbon liquids, and effective intraocular tamponades has opened new doors for managing re-RDs. In this article, we have reviewed and summarized the various causes and approaches for management for optimal anatomical and functional outcomes.

Key words: Perfluorocarbon liquid, proliferative vitreoretinopathy, recurrent retinal detachment, resurgery, scleral buckle, silicone oil, vitrectomy

Rhegmatogenous retinal detachment (RRD) is the most common form of retinal detachment (RD). In an ideal scenario, RRD can be repaired with a single surgical intervention; however, despite excellent skill, flawless technique, and the introduction of high-end technology, up to 10% of cases require additional interventions to ultimately repair recurrent detachments.[1] In addition, the increasing number of patients has nevertheless brought with it a greater number of recurrences. Although the overall functional outcome prognosis is unfavorable in recurrent retinal detachments (re-RDs), a small share of patients benefit highly by restoring a good vision even after multiple interventions.[2]

Causes of re-RD and severity of proliferative vitreoretinopathy (PVR) may be determined by the timing of detachment occurring after primary surgery. Thus, if the retina fails to attach at the time of surgery, it is termed as primary failure.[3] Secondary failure constitutes when retina subsequently detached after a period of attachment.[3] Early re-RD is defined as detachments occurring within the first 6 weeks postoperatively, whereas late re-RD is defined as detachments occurring 6 or more weeks postoperatively.[4] According to the existing literature, more than 80% of the cases of re-RD occurred within the first 6 weeks of the primary surgery; thus, the risk is greatly reduced with increased interval after surgery.[3]

The published results in various studies report a variety of treatment options depending on the cause, interval from the primary surgery, primary surgery, and severity of the recurrence with no clear definitive guidelines. Therefore, we have reviewed and summarized the various causes and approaches for management for optimal anatomical and functional outcomes. This may be useful for doctors to decide the treatments and provide precautions for patients with higher risks.

Methods

We conducted a comprehensive search in PubMed for studies published in the last 15 years undertaken by four independent researchers. The keywords used for the search were “rhegmatogenous RD,” “recurrent/persistent RD,” “scleral buckling,” “silicone oil,” “per fluorocarbon liquids,” “retinectomy,” “PVR,” “high myopic RD,” “failure,” “re-surgery,” and “re-detachment.” Inclusion criteria comprised human studies published in English, which discussed incidence of retinal redetachments following scleral bucking or vitrectomy, risk factors for redetachments, incidence/risk of RD after silicone oil removal (SOR), management of retinal redetachment, outcomes, and success of various tamponading agents used in RD surgery. Review articles, prospective randomized and nonrandomized clinical studies, retrospective clinical studies, short case series, and pilot studies were included. A manual search of related articles was also performed through references reported in each article.

Risk Factors Relating to Redetachment

Recognition of the causes and risk factors, which lead to redetachment after a surgery, are very important for every surgeon. Awareness of risk factors not only allows the surgeon
Table 1: Summary of risk factors relating to recurrent retinal detachment enlisted in various studies

<table>
<thead>
<tr>
<th>Previous surgeries/Retinal condition</th>
<th>Study</th>
<th>Study design</th>
<th>Patients included</th>
<th>re-RD %</th>
<th>Risk factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure after PR</td>
<td>Rootman et al[6]</td>
<td>Prospective interventional case series</td>
<td>113 patients with new-onset primary RRD treated with PR</td>
<td>31.4</td>
<td>2, 9, 10, 11</td>
</tr>
<tr>
<td></td>
<td>Anaya et al[7]</td>
<td>Retrospective, case series</td>
<td>73 out of total 423 patients that failed primary PR</td>
<td>25</td>
<td>9, 7, 10</td>
</tr>
<tr>
<td>re-RD post-SB</td>
<td>Goezinne et al[3]</td>
<td>Retrospective</td>
<td>436 eyes undergoing primary SB</td>
<td>24</td>
<td>8, 9, 10, 12, 16</td>
</tr>
<tr>
<td>re-RD after SB/vitrectomy undergoing PR</td>
<td>Petrushkin et al[8]</td>
<td>Retrospective</td>
<td>42 cases who underwent secondary PR after either scleral buckling or vitrectomy</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>re-RD under silicone oil</td>
<td>Sigler et al[9]</td>
<td>Prospective, interventional case series</td>
<td>39 patients presenting with recurrent RD or ERM under SO</td>
<td>13.9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Ambiya et al[10]</td>
<td>Retrospective</td>
<td>133 cases of recurrent RD</td>
<td>25.8</td>
<td>9, 21</td>
</tr>
<tr>
<td></td>
<td>Solaiman and Dabour[11]</td>
<td>Prospective</td>
<td>23 silicone filled eyes undergoing supplemental buckle or re-vitrectomy</td>
<td>16.7</td>
<td>9, 17, 18</td>
</tr>
<tr>
<td></td>
<td>Sharma et al[12]</td>
<td>Retrospective</td>
<td>118 SO-filled eyes with recurrent RD were managed with revision of vitrectomy with membrane surgery with or without SOR, only SB or both</td>
<td>37.3</td>
<td>8, 9, 27</td>
</tr>
<tr>
<td>re-RD after complicated RD/PVR</td>
<td>Üney et al[13]</td>
<td>Retrospective</td>
<td>120 patients who underwent PPV with silicone oil tamponade</td>
<td>25</td>
<td>9, 10, 11</td>
</tr>
<tr>
<td></td>
<td>Wickham et al[14]</td>
<td>Prospective, randomized control trial</td>
<td>615 patients in trial investigating the use of 5-fluorouracil and low-molecular-weight heparin</td>
<td>15.6</td>
<td>1, 3, 4, 9, 10, 24</td>
</tr>
<tr>
<td></td>
<td>Adelman et al[15]</td>
<td>Retrospective</td>
<td>7678 cases of RRD</td>
<td>33</td>
<td>6, 9, 10</td>
</tr>
<tr>
<td></td>
<td>Kapran et al[16]</td>
<td>Retrospective</td>
<td>61 patients with complicated RD, silicone oil in 40, and perfluoropropane (C3F8) in 18 patients</td>
<td>29</td>
<td>9, 10, 13, 19</td>
</tr>
<tr>
<td></td>
<td>Goezinne et al[17]</td>
<td>Retrospective</td>
<td>30 eyes operated with vitrectomy for RD with GRT</td>
<td>30</td>
<td>11</td>
</tr>
<tr>
<td>re-RD after SOR</td>
<td>Nagpal et al[18]</td>
<td>Retrospective</td>
<td>412 eyes (with attached retina after vitrectomy with silicone oil for RRD) undergoing SOR</td>
<td>12.7</td>
<td>3, 20, 25</td>
</tr>
<tr>
<td></td>
<td>Teke et al[19]</td>
<td>Retrospective</td>
<td>894 patients undergoing SOR after vitrectomy for complicated RD</td>
<td>13.2</td>
<td>3, 16, 26, 28</td>
</tr>
<tr>
<td>Late re-RD</td>
<td>Jonas et al[20]</td>
<td>Retrospective</td>
<td>225 patients undergoing SOR</td>
<td>25.3</td>
<td>3, 9, 20</td>
</tr>
<tr>
<td></td>
<td>Foster and Meyers[21]</td>
<td>Retrospective</td>
<td>10 eyes with late recurrent RRD after 1 or more years of reattachment out of a total of 453 patients</td>
<td>2.2</td>
<td>9, 10, 11, 15</td>
</tr>
<tr>
<td></td>
<td>Zhioua et al[22]</td>
<td>Retrospective</td>
<td>445 operated for RRD, 9 eyes had a late RRD. 6 eyes had SB, and 3 eyes had vitrectomy with SO injection then SOR</td>
<td>2.02</td>
<td>10, 13, 14</td>
</tr>
</tbody>
</table>


To be better prepared for the surgery ahead but also to prepare the patient for the possibility of a suboptimal outcome [Table 1].

Overall, development of PVR was found to be a potent predictor of failure in almost all studies, seen in 5–11% of patients.[23] The mechanisms of PVR are incompletely understood. Earlier, it was believed that retinal pigment epithelium cells liberated through retinal breaks tend to proliferate along with glial cells resulting in epiretinal membrane (ERM) formation.[24] Recently, contraction and atrophy of intrinsic retinal elements causing retinal shortening and membrane contraction are considered more important leading to anteroposterior, perpendicular, or circumferential traction on the retina, and a combination of all, most notably around the vitreous base.[25]

Majority of the studies quote PVR ≥ Grade C, anterior and inferior PVR to be associated with a higher risk re-RD.[6,17,19,22,26]
It was previously reported that 86% of eyes with re-RD after vitrectomy have a component of anterior PVR and eyes with anterior PVR have poorer surgical prognosis than those with posterior PVR.

The second most common cause of redetachment was related to retinal breaks. Large breaks more than three disk diameters of new breaks or missed breaks or ineffective closure of preexisting breaks either by improper positioning of the scleral buckle (SB) or by inadequate chorioretinal adhesion, reopening of an old break, and reopened macular hole lead to redetachment.

Risk factors for redetachment related to the characteristics of primary RD were longer duration of symptoms, involvement of inferior and all four quadrants, progressive vitreoretinal traction with or without PVR, persistent detachment, choroidal detachment, significant hypopyon, and pseudophakic status in detachment. However, contrary to this, in a study comparing anatomical and functional results following primary PPV for RD with superior versus inferior breaks, adequate rates were achieved using PPV alone to treat uncomplicated RRD irrespective of the location of the breaks. Some of the causes mentioned above result in inflammation and hence can potentially trigger PVR.

Other causes related to SB were persistent and/or progressive reaccumulation of subretinal fluid (SRF), or progressive leakage of SRF at the peripheral edge of the buckle caused by lack of indentation. In a study by Smiddy et al., the authors have mentioned following causes of re-RD following SB surgery in the absence of advanced PVR (grade C-2 or greater); improper positioning of the buckle under the primary break, inadequate buckle height, progressive vitreous traction elevating the break off the buckle, formation of new breaks, insufficient chorioretinal adhesion.

In a retrospective study of 36 patient by Han et al., the incidence of re-RD was 12% after SB removal for buckle related complications.

Concerning redetachment under silicone oil (SO), inadequate or unidirectional (superiorly directed) retinal tamponade with SO, especially when a strict continuous posturing is not adhered to in the first few postoperative days, and perisilicone proliferation were associated with redetachment.

High myopic and posterior staphylomatous eyes are at a high risk for recurrences of detachment due to various intraoperative and inherent anatomic variation. Intraoperative induction of complete posterior vitreous detachment is rarely possible in highly myopic eyes because of the stronger vitreoretinal adhesion and posterior shifting of the vitreous base. Despite meticulous shaving, vitreous collagen fibers intertwining with the outer retina represent a scaffold for reproliferation, a prerequisite for retinal stiffening and PVR.

Surgical causes include multiple surgeries, incomplete removal of the vitreous base and shaving, retinotomies, and relaxing retinotomies.

In retrospective study of 133 cases of re-RD conducted at L. V. Prasad Eye Institute, PVR ≥ Grade C and multiple resurgeries are associated with higher incidence of anatomical failure in re-RD surgery. Multiple breaks are associated with a poorer visual outcome, whereas a better baseline visual acuity and delayed recurrence of RD after primary repair were associated with a better visual outcome.

Silicone oil removal

SO is usually removed after 3 months if the retina is attached. One of the major complications of SOR is redetachment, the rate of which varies across literature from 5% to up to one-third of all eyes undergoing SOR, because of different confounding factors including ethnic, socioeconomic, and access to healthcare. Teke et al. found that after SOR in 776 patients (86.8%), 118 patients (13.2%) developed redetachment. Choudhary et al. reported a redetachment rate of 3.46% after SOR with 173 cases and stated that aggressive vitreous base shaving, performing retinotomy, filling the eye with SO for full tamponade, and performing argon laser would reduce the complication rate. Scholda et al. has reported PVR, ERM or anterior PVR, preceding surgeries, myopia, cataract surgeries, and duration of tamponade as significant risk factors for re-RD post-SOR.

Factors decreasing the incidence of re-RD after SOR are 360° endolaser barrage prior to SOR, presence of encircling buckle, and SO emulsification prior to SOR. Although complete vitrectomy and vitreous replacement along with a 360° encircling SB remains a fundamental requirement for most eyes with established PVR. That is because the vitreous base, particularly inferiorly, becomes fibrocellular in PVR and continues to contract even after a complete vitrectomy, as it is virtually impossible to remove the whole vitreous base.

In a study by Nagpal et al., the re-RD rates were found to be lower when SOR was performed in the presence of emulsified SO (6.17%) compared with when there was no emulsification (17.78%), as in this state of emulsification, SO does not serve the purpose of internal tamponade.

Management of Recurrent Retinal Detachment

Redetachment after scleral buckle

The primary anatomical success rate for SB surgery is found to be between 70% and 92%. PVR is most commonly reported to be the cause of failed surgery. Most of the primary failed buckling surgeries undergo PPV to achieve anatomical and functional success.

Even as the preference for SB is gradually decreasing, an alternative approach uses vitrectomy-based chandelier visualization systems. As surgeons are more comfortable with the vitrectomy-based systems, this approach is a middle path as well as an educational tool to help in reviving the dying art of buckling.

A study by Fleur Goezinne et al. evaluated the data of 436 eyes that underwent SB surgery and found that after more than 6 and 12 months of follow-up, redetachment occurred in 32 eyes (7%) and 20 eyes (5%), respectively. Multivariate regression analysis pointed out that recurrent redetachment and visual field loss more than 7 days were poor prognostic factors for postoperative visual outcome at 12 months.

Kreissig et al. reported 10% incidence of re-RD after SB procedures. They observed that early redetachment (up to
6 months after SB surgery) was caused mainly by PVR, while in nearly half of the cases, a late redetachment was caused by new breaks. Although PVR is also observed in patients with late recurrent RRDs, vitreous base traction is probably the main culprit in these cases and that the associated PVR might as well be a secondary phenomenon.

Surgical techniques useful for reattaching the retina with revision of buckle in these cases include:
1. Augmenting the original buckle by adding SB material
2. Modifying the existing buckle without adding new material
3. Replacing the original buckle with other material
4. Re-treating inadequately closed breaks
5. Combinations of the above four techniques

Thus, vitrectomy can be avoided in many cases by treating the rhegmatogenous component of the re-RD by revision of buckle, especially in eyes with only mild PVR changes.

Rescue pneumatic retinopexy

Pneumatic retinopexy (PR) use as a “rescue” procedure for re-RD following SB was first reported by Edwin Boldrey, and the results of its use were seconded by several authors. In a study by Petrushkin et al. on 44 eyes who underwent a PR as a secondary rescue surgery in patients who had vitrectomy and gas tamponade or SB for as a primary surgery for RD. They noted that 90% of vitrectomized eyes and 100% of eyes with a SB achieved anatomical success at 3 months after rescue PR. This success of the procedure can be attributed to elimination of the vitreous as a potential source of traction in vitrectomized eyes and the presence of a scleral indentation that counteracts traction by inducing redundancy in the cortical and core vitreous fibrils. The authors concluded that PR is a valid rescue procedure in selected cases of missed or unsupported breaks for re-RD following vitrectomy and SB for patient. The most common complication noted was that procedure was cataract, more frequently observed in those who had vitrectomy as a primary procedure.

Pars plana vitrectomy for recurrent retinal detachment

The surgical management of re-RD involves an accurate assessment of the cause of failure. The important causes of failure include PVR, open retinal break (s) without PVR, or intrinsic retinal contraction.

Management of proliferative vitreoretinopathy

Surgery is the standard treatment for PVR to reattach the retina by identifying all the breaks and relieving all significant vitreoretinal traction. The advent of microincision vitrectomy system (MIVS), perfluorocarbon liquids (PFCL), and effective intraocular tamponades has opened new doors for managing PVR effectively.

Encircling scleral buckle

If a SB was not placed during the previous surgery, the surgeon should have a low threshold for placing an encircling SB at the time of reoperation if an extensive relaxing retinectomy is not planned to address the risk of subsequent tractional redetachment.

Core vitrectomy and removal of the vitreous base

Any remaining central gel is removed completely and then peripheral vitreous is removed meticulously after indentation and as completely as possible, particularly inferiorly where pigment and inflammatory cells tend to gravitate and a common cause of recurrence of RD especially under SO.

A bimanual technique with an illuminated probe or pic held in the second hand can also be helpful in protecting the retina. A chandelier lighting system may be used for the same purpose.

In comparison to 20 ga, the MIVS cutter port is smaller and closer to the tip. A smaller port and a proximity closer to the tip maybe advantageous when performing complex maneuvers, such as shaving of the vitreous base and working near detached mobile retina. Higher cutting rates extending up to 5000–8000 cpn reduce the likelihood of uncut vitreous fibers going through the cutter port, thereby reducing dynamic vitreoretinal traction with less chance of iatrogenic retinal tears and damage to the retinal surface.

Formed vitreous attached to the peripheral retina is also very difficult to remove if the retina is detached and mobile, in which case it can be stabilized at this stage by partly filling the vitreous compartment with PFCL. This has the dual effect of flattening the retina by displacing SRF anteriorly and breaking down visible microscopic retinal bridges of scar tissue.

Turbulence needs to minimized by lowering the intraocular pressure (IOP) and using valved trocars, to stabilize PFCL and ensure stability of the retina, thus minimizing risk of retained PFCL droplets.

An attached posterior hyaloid in re-RD may be found multiple times, especially in children and myopes. In such cases where vitreous remains attached to the retinal surface posteriorly as well as at the vitreous base, the process of removal may be facilitated by visualization with intravitreal triamcinolone acetone (IVTA). IVTA (0.1–0.3 mL, 40 mg/mL [4%] concentration) improves identification of tissue through the deposition of crystals, which helps the surgeon achieve complete detachment and removal of the posterior hyaloid. IVTA may prevent fibrin reaction and PVR postoperatively.

Removal of membranes

After a maticulous vitrectomy, any retinal folds due to ERM must be dealt with. Membranes are peeled from the retinal surface from the posterior pole outward with a forceps, illuminated pick, or a blunt vitreous spatula. The membranes may easily peel off in a single sheet or in piecemeal depending on the adherence. The complete maturation of ERMs may take about 6–12 weeks. Thus, it may be prudent to delay resurgery to facilitate the removal of these membranes in case the macula is attached. While peeling, care must be taken to avoid creating iatrogenic retinal breaks.

Trypan blue ophthalmic solution 0.15% (MembraneBlue, DORC) is commonly used to help visualize the ERM, internal limiting membrane (ILM), and staining of PVR membranes in eyes with complex RD. It is the only retinal dye solution approved by the FDA. It is easier to rinse out and there is no risk of xenon light-induced damage.

Another option is a dual-combination solution (MembraneBlue-Dual, DORC) containing Trypan blue 0.15%, Brilliant Blue G (BBG) 0.025%, and 4% polyethylene glycol (PEG). It was commercially developed to provide a dual
dye solution in a single injection that is suitable for ILM, ERM, and PVR membrane staining. Due to a new integrated carrier 4% PEG solution, it can be injected in a BSS-filled eye and sinks immediately as a cohesive ball without diffusion throughout the whole globe. 

Any subretinal bands causing obvious retinal traction should be removed via an extramacular retinotomy.

ILM peeling may be carried out at the posterior pole after staining with vital dyes to remove the scaffold for reproliferation. Indocyanine green (ICG) and BBG are used for staining and visualizing the ILM. Adverse effects reported with the use of ICG are visual field defects, reduced visual acuity due to a dose-dependent toxic effect on the retina, and persistent staining. Hence, BBG is now the preferred dye. 

In a retrospective case series of 14 patients, Minarick and von Fricken noted high anatomic success rate (79%) in PVR-related re-RDs using ICG-assisted ILM peeling in conjunction with vitrectomy and peeling of peripheral membranes. They considered the technique as a tissue-sparing alternative to the more extensive traditional retinectomy in select cases.

Testing adequacy of relief of traction and relaxing retinotomy

Machemer et al. identified three main indications for relaxing retinotomy: contraction of the edges of a large retinal tear, taut subretinal strands preventing retinal reattachment, and retinal incarceration in a wound.

After a complete fluid–air exchange and drainage of SRF, retina may fail to flatten if there is any residual traction or contracted retina due to intraretinal gliosis. It may require a limited peripheral relaxing retinotomy or even a circumferential or radial retinotomy or local retinectomy. PFCL helps to judge the mobility of retina and deciding the extent of retinotomy and retinectomy. A retinectomy should be made as anterior as possible after stabilizing the posterior pole with PFCL. Hemorrhage is avoided by meticulous endocautery to posterior edge. The posterior edges of the retinectomy are then thoroughly sealed with 2 or 3 concentric rows of endolaser photocoagulation. The retina anterior to the retinotomy should be completely removed to prevent neovascularization due to ischemic stimuli. 

Failure to relieve all traction is the most frequent cause of a poor anatomic result. On the other hand, a relaxing retinotomy should not be undertaken lightly. After a large circumferential retinotomy, the posterior free edge may trigger PVR aggressively, contract under SO almost back to the disk and macula, and compromise the visual outcome. Another complication of retinectomy is hypotony. In the SO study, hypotony was more prevalent in eyes that had undergone retinectomy than those that did not. In addition, in the eyes that underwent retinectomy, hypotony was less frequent in oil-filled eyes than gas filled in the first 6 months follow-up. However, other studies contradict the association between retinectomy size and postoperative hypotony.

Tsui and Schubert reported an anatomical success rate of 90% in 41 patients with re-RD caused by anterior intraretinal and subretinal PVR, which required greater than 180° retinotomy and SO tamponade.

Quiram et al. found similar success rates of more than 90% complete retinal attachment after lensectomy, radical anterior base dissection, and inferior retinectomy in 56 patients with PVR-induced re-RD. After retinal reattachment, BCVA was improved or stabilized in 70% patients. SOR was performed in 58% before the last follow-up visit, with a 4% redetachment rate.

Tan et al. retrospectively reviewed 123 patients undergoing retinectomy without SB for anterior PVR. Ninety-six patients (77.2%) required no additional surgeries, 21 patients (17.1%) required 1 additional operation, and 4 patients (3.8%) required 2 additional operations. Visual acuity improved in a statistically significant fashion, from 2.10 to 1.44 logMAR units in all patients.

Mancino et al. found a success rate of 90% with 180° inferior retinectomy, SO tamponade, combined with phacoemulsification and intraocular lens implantation for recurrent inferior RD with Grade C PVR in phakic eyes that had undergone primary vitrectomy.

In a retrospective analysis of 51 eyes undergoing retinectomy of 180° or more, visual improvement or stabilization was achieved in 76.2% patients.

Narala et al. evaluated the outcomes of repeat vitrectomy for PVR after previous failed vitrectomy. Authors found that eyes with a history of preoperative retinectomy were significantly more common in the unsuccessful group, as they likely had more severe PVR to begin with, therefore increasing risk of persistent retinal contraction after surgery.

Tamponade in proliferative vitreoretinopathy cases

A tamponade agent because of its surface tension reduces the rate of fluid flow through open retinal tears, which would cause re-RD until the applied retinopexy (photocoagulation or cryopexy) creates a permanent seal. Since the US FDA approved SO in 1996 for the purpose of intraocular tamponade, it has been routinely used as an adjunct in vitreoretinal surgery. A controlled trial suggested that short-term tamponade for 2 weeks with sulfur hexafluoride (SF6) was inadequate but that longer acting gas tamponade with octafluorocyclobutane (C3F8) for up to 4 weeks was adequate for many eyes. Results were comparable in long-term outlook to those in which SO was inserted. The SO study concluded that SO was superior to sulfur hexafluoride and roughly equivalent to fluoropropane in cases with RD with severe PVR.

In practice, however, most surgeons prefer SO. This is because the majority of these eyes have already had one or more previous surgeries and SO tends to quieten the eye down much quicker and ensure control of a very difficult clinical situation.

Most vitreoretinal surgeons prefer the 1000–1300 cSt oil because of its relative ease of removal. The final aim is to achieve a complete fill of the vitreous cavity with SO but an IOP between 10 and 15 mmHg.

Heavy silicone oil

An additional choice for retinal tamponade is that of heavier than water, fluorinated silicone liquid. Heavy silicone oil (HSO) tamponades the inferior retina when the patient is upright. It has been used in combination with light SO but more often as an alternative, particularly after inferior relaxing
Management of re retinal detachment under silicone oil

The rate of recurrence of RD in SO filled eyes varies from 21.4% to 77%. The important causes of failure in SO filled eyes include PVR, leaking unattached peripheral inferior RD, posterior vitreous detachment without PVR, or intrinsic retinal contraction.

The options available for surgery under SO include:
1. Membrane surgery with SO in situ
2. SOR followed by removal of membranes and internal tamponade with SO or gas
3. Supplementing with SB without repeat vitrectomy

Recurrence of RD under SO provides management challenge. Unfortunately, guidelines for the diagnosis and management of these complicated cases are not defined clearly.

Revision vitrectomy with silicone oil in situ

Revision vitrectomy with SO in situ includes several steps that are quite similar to conventional vitrectomy. Yet, it requires meticulous planning and surgical skills. The infusion line is connected to an automated SO injector or air to maintain IOP, depending on the surgeon preference. To improve intraoperative visualization, any emulsified SO from the anterior chamber is removed. Membranes are peeled off the vitreous forces to the macula. A secondary retinal tear, if present, requires complete relief of traction and further laser. Retinal shortening usually needs a high SB and/or peripheral retinectomy. Any residual subretinal and preretinal fluid is drained by active suction, and SO is topped up as required.

Membranes under the SO may vary in thickness and adherence to the underlying detached retina. Sometimes they are so thin, pigmented, and strongly adherent to the retina that it is difficult to get at an edge and lift. More often, these membranes in SO-filled eyes can be held and removed with intraocular forceps with great ease. As the retina remains attached under oil, membrane removal is easier. Surgery under oil has an advantage in reducing the operation time.

However, it may be difficult to control bleeding under oil. If bleeding occurs, injection of additional SO to increase the IOP temporarily is the best method to stop the bleeding. Adequate diathermy to the edges of the retinotomy and to the bleeding vessels can avoid this complication.

In a study of 50 SO-filled eyes by Darwish, an unsupported lower break with no PVR was managed by face down positioning followed by laser barrage, and in cases where this technique failed, SO fluid exchange was done. Forty-four cases with retinal contraction, posterior PVR, and/or anterior PVR were operated with SO in situ. They reported a success rate of 85.2% in cases of re-RD posterior PVR to 57.1% in cases of combined anterior and posterior PVR.

Revision vitrectomy with silicone oil removal

Revision of vitrectomy with SOR is recommended in the following instances:
1. Phakic SO-filled eyes
2. If extensive membrane dissection is anticipated in both posterior and peripheral regions
3. When subretinal SO or a large amount of subretinal emulsified oil is present
4. When extensive subretinal proliferation is responsible for redetachment
5. When large relaxing retinotomies along with large retinectomies are desired to attain intraoperative flattening of the retina

Supplemental scleral buckle in silicone oil-filled eyes

Another surgical approach is SB, which can increase the tamponade effect of SO on the inferior retina, as it creates an area of contact by bringing the peripheral retina closer to the SO bubble, while relieving the traction on the retina circumferentially and supporting the retinal breaks. Acar et al. and Solaiman and Dabour reported that inferior RD in SO-filled eyes treated with SB surgery had satisfactory functional and anatomic outcomes in selected re-RD cases.

The surgical technique includes localization of the open retinal breaks and retinopexy with cryotherapy and/or laser photocoagulation, then placement of scleral sutures, external drainage of any significant SRF, and placement of an explant. If required, pars plana aspiration of SO can be done in cases of raised IOP or shallow SRF.

Solaiman and Dabour evaluated the efficiency of treating selected cases of inferior RD in SO-filled eyes using a supplemental SB with external drainage of SRF versus re-vitrectomy. They found shorter operating time in SB group with similar results after SOR. They concluded that SB could offer a faster, less invasive, and better economic alternative to repeated vitreoretinal surgery for treatment of such cases.

In a case series of seven patients with recurrent inferior RD under oil, Acar et al. reported anatomic success rate of 85.7% after SOR. Pars plana aspiration of SO was done in three cases.

Wei et al. compared the effectiveness of supplemental SB versus re-vitrectomy depending on the timing of detachment from primary surgery. The study concluded that for eyes with recurrent inferior RD in the early period (≤1 month) after primary vitrectomy, SB surgery may be a better choice since it causes less complication, while in the late period (1–6 months) after primary PPV, re-vitrectomy may be recommended, especially for the eyes with severe anterior PVR and retinal foreshortening.
Recurrent retinal detachment in highly myopic eyes

Re-RD occurring in highly myopic eyes frequently entails a guarded prognosis and its treatment usually consists of extensive inferior retinotomy or tamponade with HSO, in addition to being technically challenging and functionally disappointing. In a study by Guido Ripandelli et al., they retrospectively evaluated data from 255 eyes of 237 highly myopic patients having re-RD after primary SB (40%), primary PPV (40%), and multiple surgeries (20%). Results of their study gave a high reattachment rate of 90% in the post-SB group, 90% in the post-PPV group, and 85% in the post-multiple surgery group. Although the visual acuity gain was disappointing in the SB group (mean 20/60) and 20/200 in both post-PPV and post-multiple surgery groups, they concluded that encircling SB with extensive inferior indentation can be an indispensable adjunct to PPV, ILM peeling, and SO tamponade in the treatment of re-RD in highly myopic eyes.

The algorithm for management of recurrent RRD has been summarized in Fig. 1.

Conclusion

As SB is on a decreasing trend and primary vitrectomy is often the preferred choice for most of the surgeons, this coupled with the advances in technology has led to pars plana vitrectomy becoming the cornerstone for the management of re-RDs. It is thus important to study the outcomes of multiple interventions to understand whether performing repeat vitrectomy on patients with a history of failed surgeries is worthwhile.

Enders et al. found that patients with first redetachment are exposed to a risk of approximately 21–26% for recurring RD after every additional surgical procedure aiming for RD repair. Predictability of functional outcome remained poor because of the wide range of interindividual postoperative visual acuity.

In addition, Pournaras et al. were able to show that repeated operations in cases of refractory RD can result in a high percentage of anatomical success (80%) with a considerable percentage of eyes retaining a good visual acuity (29%). PVR was found to affect both the anatomical and functional outcome.

In another retrospective case series including 51 eyes undergoing repeat surgery after failed previous vitrectomy for PVR, 17 (33.3%) eyes deemed successful and 34 (66.7%) eyes unsuccessful. Authors stressed on the fact that success after repeat surgery for PVR should include ambulatory vision, retinal reattachment, and SOR.

Thus, re-RD remains a significant challenge for vitreoretinal surgeons as well as the patients considering the economic and the emotional burden of undergoing multiple interventions. However, even if some patients retain ambulatory vision, it may be rewarding to operate such cases.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.
References


42. Wykoff C. Treating recurrent retinal detachment due to PVR. Retina Today 2017;32-3.


